Томас морган сформулировал закон сцепленного наследования генов

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Томас морган сформулировал закон сцепленного наследования генов». Также Вы можете бесплатно проконсультироваться у юристов онлайн прямо на сайте.

Раздел ЕГЭ: 3.5 … Законы Моргана: сцепленное наследование признаков, нарушение сцепления генов…

В каждой хромосоме локализовано множество генов. Гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются вместе. Совместное наследование генов Т. Морган предложил назвать сцепленным. Число групп сцепления соответствует гаплоидному набору хромосом.

Способ наследования сцепленных генов отличается от наследования генов, находящихся в разных хромосомах. При независимом комбинировании дигибрид образует четыре типа гамет в равных количествах, а дигибрид с генами, локализованными в одной паре хромосом, — только два типа гамет, тоже в равных количествах.

Чтобы рассказать кратко и понятно о законе Томаса Моргана, следует для начала вспомнить, что такое хромосома.

Хромосома – это структура, находящаяся в ядре клетки и несущая наследственную информацию. Состоит из длинной цепи ДНК, которая в свою очередь состоит из генов – единиц наследственной информации. Каждый ген отвечает за определённый признак. Набор хромосом называется кариотипом.

Закон сцепленного наследования Т. Моргана может нарушаться. Происходит обмен участками генов между гомологичными хромосомами, и образуются новые комбинации генов. Такое явление называется кроссинговером. Нарушение связей происходит в мейозе при конъюгации (I профаза – сближение и соединение). Гомологичные хромосомы обмениваются участками, нарушая сцепленные связи. В этом случае полностью соблюдается третий закон Менделя.

Хромосомной теорией наследования именуют теорию, доказывающую материальную основу наследственности в виде хромосом. Здесь находятся гены, обособленные клеточным ядром. Благодаря свойствам хромосом осуществляется преемственность свойств организмов по ряду поколений. Основоположником хромосомной теории является Т.Г. Морган, который вместе со своими учениками установил:

  • локализацию генов в хромосомах;
  • зависимость частоты кроссинговера между гомологичными хромосомами от расстояния между генами, локализованными в одной хромосоме;
  • наличие определенной последовательности в расположении генов по хромосомам;
  • сцепленное расположение близконаходящихся генов и образование ими сцепленных групп, равных числу гаплоидного хромосомного набора;
  • кроссинговер (обмен гомологичными участками) и его процентную частоту.

Важнейшим следствием указанной теории являются современные представления о генах, как о функциональных наследственных единицах. Сформировать хромосомной теории помогли и сведения, которые получены в результате наблюдения за генетикой пола.

Вид эксперимента: дигибридное скрещивание.

Исходные условия: G — серое тело, g — темное тело, L — нормальные крылья, / — редуцированные крылья.

Закон был открыт на основании анализа результатов двух последовательных экспериментов.

Участники скрещивания: гомозиготные мухи-дрозофилы с серым телом и нормальными крыльями (GGLL) и с темным телом и редуцированными крыльями (ggll).

Сцепленное наследование. Закон Моргана. Генетика пола

Новый организм получает от родителей не россыпь генов, а целые хромосомы, при этом количество признаков и соответственно определяющих их генов гораздо больше, чем хромосом. В соответствии с хромосомной теорией наследственности, гены, расположенные в одной хромосоме, наследуются сцепленно. Вследствие этого при дигибридном скрещивании они не дают ожидаемого расщепления 9:3:3:1 и не подчиняются третьему закону Менделя. Можно было бы ожидать, что сцепление генов является полным, и при скрещивании гомозиготных по данным генам особей и во втором поколении дает исходные фенотипы в соотношении 3:1, а при анализирующем скрещивании гибридов первого поколения расщепление должно составлять 1:1.

Для проверки этого предположения американский генетик Т. Морган выбрал у дрозофилы пару генов, контролирующих окраску тела (серое — черное) и форму крыла (длинные — зачаточные), которые расположены в одной паре гомологичных хромосом. Серое тело и длинные крылья являются доминантными признаками. При скрещивании гомозиготной мухи с серым телом и длинными крыльями и гомозиготной мухи с черным телом и зачаточными крыльями во втором поколении действительно были получены в основном родительские фенотипы в соотношении, близком к 3:1, однако имелось и незначительное количество особей с новыми комбинациями этих признаков. Данные особи называются рекомбинантными.

Закон Томаса Моргана также известен как закон сцепленного наследования. Согласно закону Моргана находящиеся в одной хромосоме гены образуют группу сцепления и часто наследуются совместно.

При этом сила сцепления зависит от расстояния между генами в хромосоме.

Закон Моргана противоречит третьему закону Менделя, согласно которому гены наследуются независимо друг от друга.

Дело в том, что каждый из данных законов имеет разное место применения. В одном случае – для генов, содержащихся в одной хромосоме. Во другом – для генов, находящихся в разных хромосома.

Сцепленное наследование возможно только для генов, локализованных в одной хромосоме. Однако оно может нарушаться в результате такого процесса как кроссинговер. Кроссинговер — это обмен равноценными участками между гомологичными хромосомами.

Кроссинговер происходит во время профазы I мейоза. В эту фазу клеточного деления гомологичные хромосомы конъюгируют (сближаются и соединяются).

Если между гомологичными хромосомами произошел кроссинговер, то сцепление между генами нарушается, ранее сцепленные аллели разных генов оказываются в разных гомологичных хромосомах.

Образуются новые комбинации генов.

Пример. У мушки дрозофилы цвет тела определяется геном, имеющим аллели A (серое тело) и a (черное тело). Длина крыльев определяется другими аллельными генами: B (длинные), b (короткие). В большинстве случаев серые мухи имеют длинные крылья, а черные – короткие.

Это говорит о том, что гены A и B сцеплены между собой, т. е. локализованы в одной хромосоме. В свою очередь гены a и b также сцеплены.

При скрещивании генотипов AABB и aabb в первом поколении все мушки будут серые с длинными крыльями (AaBb). Данный результат ничего не говорит о том, сцеплены гены или нет. Он будет одинаков в любом случае. Если гены сцеплены, то в одно хромосоме будут гены A и B от одного родителя, в гомологичной хромосоме – a и b (эта хромосома досталось от другого родителя).

Если бы гены A и B были локализованы не в одной хромосоме, а в разных негомологичных, то с равной вероятностью ген A мог оказаться в гамете как с геном b, так и с геном B. Тогда во втором поколении наблюдалось бы стандартное менделевское расщепление по фенотипу: 9A-B- : 3A-bb : 3aaB- : 1aabb (вместо черточек может быть как доминантный так и рецессивный аллель).

То есть 6 из 16 мух имели бы рекомбинантные признаки – серое тело короткие крылья и черное тело длинные крылья.

Однако количество кроссоверных мушек существенно меньше, что говорит о сцеплении генов, когда доминантный ген A преимущественно наследуется совместно с геном B, рецессивный ген a совместно с рецессивным геном b.

Наличие же кроссоверных организмов говорит о том, что сцепление между A и B, а также a и b не полное.

Если в результате кроссинговера появилась хромосома, содержащая гены A и b (или a и B), то в дальнейшем уже они будут наследоваться совместно, т.

е. образуют новую группу сцепления.

Процент кроссинговера зависит от степени удаленности генов в одной хромосоме. Чем гены дальше друг от друга, тем меньше они сцеплены между собой, т.

е. существует большая вероятность обмена участком с гомологичной хромосомой. Близко близко расположенные гены почти всегда наследуются согласно закону Моргана.

Анализ частоты кроссинговера позволяет строить генетические карты. Расстояние между генами измеряется в сантиморганидах (или просто морганидах).

При этом если кроссоверных гамет 1%, то расстояние между генами считают равным 1 морганиде. Это значит, что гены расположены достаточно близко друг к другу, и кроссинговер между ними редок.

Если расстояние между генами равно 25 морганид, то вероятность получить кроссоверный организм равна 25%, т. е. гены локализованы в одной хромосоме достаточно далеко друг от друга.

В 1906 году У. Бэтсон и Р. Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве, гибриды всегда повторяли признаки родительских форм. Стало ясно, что не для всех признаков характерно независимое распределение в потомстве и свободное комбинирование.

Каждый организм имеет огромное количество признаков, а число хромосом невелико.

Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков. Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался Т. Морган. Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила.

Дрозофила каждые две недели при температуре 25°С дает многочисленное потомство.

Самец и самка внешне хорошо различимы — у самца брюшко меньше и темнее. Они имеют всего 8 хромосом в диплоидном наборе, достаточно легко размножаются в пробирках на недорогой питательной среде.

Дальнейшие исследования генетиков показали, что законы Менделя о независимом наследовании признаков при дигибридном скрещивании применимы лишь тогда, когда разные гены располагаются в разных парах гомологичных хромосом. В том случае, если два гена находятся в одной паре гомологичных хромосом, расщепление в потомстве гибридов будет другим.

У любого организма генов значительно больше, чем хромосом.

Например, у человека имеется около миллиона генов, а хромосом всего 23 пары. Следовательно, в одной хромосоме размещается в среднем несколько тысяч генов. Гены, расположенные в одной хромосоме, называют сцепленными. Все гены этой хромосомы образуют группу сцепления, которая при мейозе обычно попадает в одну гамету.

Значит, гены, входящие в одну группу сцепления, не подчиняются закону независимого наследования, а при дигибридном скрещивании вместо ожидаемого расщепления по фенотипу в соотношении 9:3:3:1 дают соотношение 3:1, как при моногибридном скрещивании.

В качестве объекта он использовал плодовую муху дрозофилу. У дрозофилы окраску тела и длину крыльев определяют следующие пары аллелей: А — серое тело, а — черное тело, В — длинные крылья, b — зачаточные крылья.

Гены, отвечающие за окраску тела и длину крыльев, находятся в одной паре гомологичных хромосом и наследуются сцепленно.

Чтобы рассказать кратко и понятно о законе Томаса Моргана, следует для начала вспомнить, что такое хромосома.

Хромосома – это структура, находящаяся в ядре клетки и несущая наследственную информацию. Состоит из длинной цепи ДНК, которая в свою очередь состоит из генов – единиц наследственной информации. Каждый ген отвечает за определённый признак. Набор хромосом называется кариотипом.

Рекомендуем!  К наследованию по закону наследники последующей очереди

Рис. 1. Хромосома.

Мендель рассматривал признаки, находящиеся в разных хромосомах. При скрещивании образуются разные комбинации генов, формирующие генотип индивида.

В отличие от закона Менделя закон Моргана применим к генам, находящимся в одной хромосоме.

Формулировка закона звучит следующим образом: гены, расположенные в одной хромосоме близко друг к другу, образуют группу и наследуются сцеплено. Число сцепленных групп соответствует гаплоидному набору – половине полного набора хромосом. У человека 46 хромосом, т.е. 23 пары, соответственно 23 группы сцепления.

Рис. 2. Закон Моргана.

Частота наследования зависит от расстояния между генами. Чем ближе находятся гены, образующие группы, тем чаще наследуются сцепленные признаки, т.е. при близком расположении сильнее сила сцепления.

Примеры сцепленного наследования:

  • окраска семян кукурузы сцеплена со структурой их поверхности (гладкая или морщинистая);
  • окраска цветков душистого горошка сцеплена с формой пыльцы;
  • болезни (дальтонизм, гемофилия) сцепленны с Х-хромосомой.

Если гены не сцеплены, то образуется четыре типа гамет AaBb – AB, aB, Ab, ab. При скрещивании гибридов соотношение фенотипов будет 9:3:3:1 (произойдёт расщепление). При сцепленном наследовании образуется два типа гамет – AB и ab. В этом случае поколение F2 даст потомство с фенотипом 3:1.

ВАЖНО!

Сцепление генов – это совместное наследование генов, расположенных в одной и той же хромосоме. Количество групп сцепления соответствует гаплоидному числу хромосом, то есть у дрозофилы 4. Природу сцепленного наследования объяснил Морган с сотрудниками. В качестве объекта исследования они избрали плодовую муху дрозофилу, которая оказалась очень удобной моделью для изучения данного феномена, так в клетках её тела находится только 4 пары хромосом и имеет место высокая скорость размножения (в течение года можно исследовать более 20-ти поколений). Итак, сцепленными признаками называются признаки, которые контролируются генами, расположенными в одной хромосоме. Естественно, что они передаются вместе в случаях полного сцепления (закон Моргана). Полное сцепление встречается редко, обычно – неполное, из-за влияния кроссинговера (перекрещивания и обмена участками гомологичных хромосом в процессе мейоза). То есть, гены одной хромосомы переходят в другую, гомологичную ей.

Частота кроссинговера зависит от расстояния между генами. Чем ближе друг к другу расположены гены в хромосоме, тем сильнее между ними сцепление и тем реже происходит их расхождение при кроссинговере, и, наоборот, чем дальше друг от друга отстоят гены, тем слабее сцепление между ними и тем чаще возможно его нарушение.

  • Геометрия
  • Информатика
  • Математика
  • Алгебра
  • Алгебра и начала математического анализа
  • Изобразительное искусство
  • Музыка

Хромосомная теория наследственности

  • Основы безопасности жизнедеятельности
  • Физическая культура
  • Русский язык
  • Литература
  • Литературное чтение
  • История
  • География
  • Обществознание
  • Экология
  • Россия в мире
  • Право
  • Окружающий мир
  • Экономика

Сцепленное наследование — скоррелированное наследование определённых состояний генов, расположенных в одной хромосоме.

Полной корреляции не бывает из-за мейотического кроссинговера, так как сцепленные гены могут разойтись по разным гаметам. Кроссинговер наблюдается в виде расцепления у потомства тех аллелей генов и, соответственно, состояний признаков, которые были сцеплены у родителей.

Наблюдения Томаса Моргана показали, что вероятность кроссинговера между различными парами генов разная, и появилась идея создать генные карты на основании частот кроссинговера между разными генами. Первая генная карта была построена студентом Моргана Альфредом Стёртевантом в 1913 году на материале Drosophila melanogaster.

Исследования Моргана и его школы показали, что в гомологичной паре хромосом регулярно происходит обмен генами. Процесс обмена идентичными участками гомологичных хромосом с содержащимися в них генами называют перекрёстом хромосом, или кроссинговером. Кроссинговер наблюдается в мейозе, он обеспечивает новые сочетания генов, находящихся в гомологичных хромосомах. Явление кроссинговера, как и сцепления генов, характерно для животных, растений, микроорганизмов. Исключения составляют самцы дрозофилы и самки тутового шелкопряда. Кроссинговер обеспечивает рекомбинацию генов и тем самым значительно усиливает роль комбинативной изменчивости в эволюции. О наличии кроссинговера можно судить на основе учёта частоты возникновения организмов с новым сочетанием признаков.

Соответственно организмы, возникающие от сочетания кроссоверных гамет, называются кроссоверными, или рекомбинантами, а возникающие от сочетания некроссоверных гамет — некроссоверными, или нерекомбинантными. Явление кроссинговера, как и сцепление генов, можно рассмотреть в классическом опыте Т. Моргана по наследованию у дрозофилы признаков цвета тела и длины крыльев — признаков, контролируемых генами, расположенных в одной аутосоме. На основе факта сцеплённого наследования Т. Морган сформулировал тезис, вошедший в генетику под названием правила Моргана: гены, локализованные в одной хромосоме, наследуются сцепленно, причём сила сцепления зависит от расстояния между генами.

Изучение сцепленного наследования у человека затруднено. Тем не менее, можно назвать некоторые случаи сцепленного наследования:

Чтобы рассказать кратко и понятно о законе Томаса Моргана, следует для начала вспомнить, что такое хромосома.

Хромосома – это структура, находящаяся в ядре клетки и несущая наследственную информацию. Состоит из длинной цепи ДНК, которая в свою очередь состоит из генов – единиц наследственной информации. Каждый ген отвечает за определённый признак. Набор хромосом называется кариотипом.

Хромосомная теория

Закон сцепленного наследования Т. Моргана может нарушаться. Происходит обмен участками генов между гомологичными хромосомами, и образуются новые комбинации генов. Такое явление называется кроссинговером. Нарушение связей происходит в мейозе при конъюгации (I профаза – сближение и соединение). Гомологичные хромосомы обмениваются участками, нарушая сцепленные связи. В этом случае полностью соблюдается третий закон Менделя.

Закон независимого распределения признаков (третий закон Менделя) нарушается в случае, если гены, определяющие разные признаки, находятся в одной хромосоме. Такие гены обычно наследуются совместно, т. е. наблюдается сцепленное наследование. Явление сцепленного наследования было изучено Томасом Морганом и его сотрудниками и поэтому носит название закона Моргана.

Закон Т. Моргана можно сформулировать следующим образом: гены, находящиеся в одной хромосоме, образуют группу сцепления и часто наследуются совместно, при этом частота совместного наследования зависит от расстояния между генами (чем ближе, тем чаще).

Причиной, по которой сцепленное наследование нарушается, является кроссинговер, протекающий в мейозе при конъюгации хромосом. При этом гомологичные хромосомы обмениваются своими участками, и таким образом ранее сцепленные гены могут оказаться в разных гомологичных хромосомах, что обуславливает независимое распределение признаков.

Например, ген A сцеплен с геном B (AB), в гомологичной хромосоме находятся рецессивные аллели соответствующих генов (ab). Если в процессе кроссинговера гомологичные хромосомы почти никогда не обмениваются участками так, что один ген переходит в другую хромосому, а другой остается в прежней, то такой организм образует гаметы только двух типов: AB (50%) и ab (50%). Если же обмен соответствующими участками происходит, то какой-то процент гамет будет содержать гены Ab и aB. Обычно их процент меньше, чем при независимом распределении генов (когда A и B находятся в разных хромосомах). Если при независимом распределении всех типов гамет (AB, ab, Ab, aB) будет по 25%, то в случае сцепленного наследования гамет Ab и aB будет меньше. Чем их меньше, тем ближе гены расположены друг к другу в хромосоме.

Особо выделяют сцепленное с полом наследование, когда исследуемый ген находится в половой (обычно X) хромосоме. В данном случае изучается наследование одного признака, а вторым выступает пол. Если наследуемый признак сцеплен с полом, то он по-разному наследуется при реципрокных скрещиваниях (когда признаком сначала обладает родитель женского пола, потом мужского).

Если мать обладает генотипом aa, а у отца проявляется доминантный признак (точно есть один ген A), то в случае сцепления с полом все дочери будут иметь доминантный признак (в любом случае получат от отца его единственную X-хромосому, а все сыновья — рецессивный (от отца достается Y-хромосома, в которой нет соответствующего гена, а от матери — в любом случае ген a). Если бы признак не был сцеплен с полом, то среди обоих полов детей могли быть обладатели доминантного признака.

Когда исследуемые гены сцеплены в аутосоме, то такое сцепление называют аутосомным. Сцепление называют полным, если родительские комбинации аллелей не нарушаются из поколение в поколение. Такое бывает очень редко. Обычно наблюдается неполное сцепленое наследование, которое нарушает как третий закон Менделя, так и закон Моргана (в его сокращенной формулировке: гены, находящиеся в одной хромосоме наследуются совместно).

Гены в хромосоме расположены линейно. Расстояние между ними измеряется в сантиморганах (сМ). 1 сМ соответствует наличию 1% кроссоверных гамет. Проводя различные скрещивания и статистически анализируя потомков, ученые выявляют сцепленные гены, а также расстояние между ними. На основе полученных данных строятся генетические карты, в которых отражается локализация генов в хромосомах.

Закон Томаса Моргана

Дальнейшие исследования генетиков показали, что законы Менделя о независимом наследовании признаков при дигибридном скрещивании применимы лишь тогда, когда разные гены располагаются в разных парах гомологичных хромосом. В том случае,если два гена находятся в одной паре гомологичных хромосом, расщепление в потомстве гибридов будет другим.

У любого организма генов значительно больше, чем хромосом. Например, у человека имеется около миллиона генов, а хромосом всего 23 пары. Следовательно,в одной хромосоме размещается в среднем несколько тысяч генов. Гены,расположенные в одной хромосоме, называют сцепленными. Все гены этой хромосомы образуют группу сцепления, которая при мейозе обычно попадает в одну гамету.

Значит, гены, входящие в одну группу сцепления, не подчиняются закону независимого наследования, а при дигибридном скрещивании вместо ожидаемого расщепления по фенотипу в соотношении 9:3:3:1 дают соотношение 3:1, как при моногибридном скрещивании.

Закономерности сцепленного наследования были установлены американским биологом Томасом Морганом (1866-1945). В качестве объекта он использовал плодовую муху дрозофилу. У дрозофилы окраску тела и длину крыльев определяют следующие пары аллелей: А — серое тело, а — черное тело, В — длинные крылья, b- зачаточные крылья. Гены, отвечающие за окраску тела и длину крыльев,находятся в одной паре гомологичных хромосом и наследуются сцепленно.

При скрещивании дрозофилы с серым телом и длинными крыльями с дрозофилой,имеющей черное тело и зачаточные крылья, все гибриды первого поколения имели серую окраску тела и длинные крылья.

При дальнейшем скрещивании между собой гибридных мух первого поколения в F2не произошло ожидаемого расщепления по фенотипу 9:3:3:1. Вместо этого в F2были получены мухи с родительскими фенотипами в соотношении примерно 3:1.Появление в F2 двух фенотипов вместо четырех позволило сделать вывод, что гены окраски тела и длины крыльев дрозофил находятся в одной хромосоме. Так был установлен закон Т.Моргана: гены, расположенные в одной хромосоме, наследуются совместно — сцепленно, то есть наследуются преимущественно вместе.

Рекомендуем!  Наследование по закону юрист

Однако при дигибридном скрещивании при сцепленном наследовании признаков не всегда появляются особи только двух фенотипов. Иногда появляются особи еще двух фенотипов с перекомбинацией (новым сочетанием) родительских признаков: серое тело — зачаточные крылья, черное тело — длинные крылья. (Особей с такими фенотипами немного — около 8,5% каждого типа.) Почему же нарушается сцепление генов и появляются особи с новыми фенотипами? Было установлено, что сцепление генов может быть полным и неполным.

Полное сцепление наблюдается в том случае, если скрещиваются серый самец с длинными крыльями и самка с черным телом и зачаточными крыльями. Расщепление по фенотипу в этом случае будет 1:1, то есть наблюдается полное сцепление генов в одной хромосоме.

При скрещивании серой длиннокрылой самки с самцом, имеющим черное тело и зачаточные крылья, расщепление по фенотипу будет примерно 41,5:41,5:8,5:8,5,что характеризует неполное сцепление. Причина нарушения сцепления заключается в том, что в ходе мейоза происходит кроссинговер и гомологичные хромосомы обмениваются своими участками. В результате гены, расположенные в одной из гомологичных хромосом, оказываются в другой хромосоме. Возникают новые сочетания признаков.

У самцов дрозофил в мейозе кроссинговер не происходит, поэтому при скрещивании серого длиннокрылого самца дрозофилы с рецессивной самкой с черным телом и зачаточными крыльями сцепление будет полным. Неполное сцепление наблюдается в том случае, если самка гетерозиготна, а самец гомозиготен. В данном примере кроссинговер происходит примерно у 17% самок.

Таким образом, если не происходит перекреста хромосом и обмена генами, то наблюдается полное сцепление генов. При наличии кроссинговера сцепление генов бывает неполным. Благодаря перекресту хромосом возникают новые сочетания генов и признаков. Чем дальше друг от друга расположены гены в хромосоме, тем больше вероятность перекреста между ними и обмена участками хромосом.

Количество разных типов гамет будет зависеть от частоты кроссинговера или расстояния между анализируемыми генами. Расстояние между генами исчисляется в морганидах: единице расстояния между генами, находящимися в одной хромосоме,соответствует 1% кроссинговера. Такая зависимость между расстояниями и частотой кроссинговера прослеживается только до 50 морганид.

Сравните результаты скрещивание дрозофил: а) Полное сцепление без кроссинговера б) С частотой кроссинговера равной 17 %

Результатом исследований Т.Х.Моргана стало создание им хромосомной теории наследственности:

1. Гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов, причем набор генов каждой из негомологичных хромосом уникален;

2. Каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;

3. Гены расположены в хромосомах в определенной линейной последовательности;

4. Гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;

5. Сцепление генов может нарушаться в процессе кроссинговера; это приводит к образованию рекомбинантных хромосом;

6. Частота кроссинговера является функцией расстояния между генами: чем больше расстояние, тем больше величина кроссинговера (прямая зависимость);

7. ��аждый вид имеет характерный только для него набор хромосом — кариотип.

Г.Мендель проследил наследование семи пар признаков у гороха. Многие исследователи, повторяя опыты Менделя, подтвердили открытые им законы. Было признано, что эти законы носят всеобщий характер.

Действительно, генов, кодирующих различные признаки, у любого организма много. Так, по приблизительным подсчетам, у чело­века около 120 тыс. генов, а видов хромосом всего 23. Количество генов в любом организме больше числа пар хромосом. Поэтому в каждой паре хромосом локализованы сотни и тысячи аллельных генов, образующих группы сцепления.

Сцепление генов было открыто в 1911-12 гг. Т. Морганом и его сотрудниками. Объектом исследования была муха-дрозофила.

[2]

Многие исследователи независимо друг от друга приходили к одинаковым выводам. К первому десятилетию ХХ века было известно о роли хромосом в наследовании, был введён в употребление термин «ген», были выявлены половые хромосомы и способы передачи наследственной информации. Знаковой работой стало исследование под руководством Моргана. Благодаря наблюдениям за поколениями фруктовой дрозофилы и на основе накопленных знаний были сформулированы основные положения хромосомной теории наследственности Моргана:

  • гены, отвечающие за наследование признаков, расположены в хромосомах;
  • гены располагаются линейно, каждый ген имеет своё место в хромосоме – локус;
  • набор генов в каждой хромосоме уникален;
  • расположенные близко друг к другу группы генов наследуются сцеплено;
  • число сцепленных генов равно гаплоидному набору хромосом и постоянно для каждого вида (у человека 23 пары хромосом, следовательно, 23 пары сцепленных генов);
  • сцепление хромосом нарушается в ходе кроссинговера (перекрёста) – процесса обмена участками хромосом в профазе I мейоза;
  • чем дальше друг от друга находятся сцепленные группы генов в хромосоме, тем больше вероятность кроссинговера.

Рис. 2. Сцепленное наследование.

Эксперименты Моргана показали, что гены, находящиеся в одной хромосоме, наследуются сцеплено, попадая в одну гамету, т.е. два признака всегда наследуются вместе. Такое явление было названо законом Моргана.

Рис. 3. Кроссинговер.

Рассказали кратко и понятно о хромосомной теории наследственности. Работа Моргана и его коллег помогла переосмыслить и дополнить законы Менделя. Было выявлено, что некоторые признаки наследуются сцеплено, т.к. гены, отвечающие за разные признаки, находятся близко друг к другу на одном участке хромосом. Расхождение сцепленных генов возможно только при кроссинговере – перекрёсте гомологичных хромосом.

Подробное экспериментальное доказательство и объяснение хромосомная теория наследственности получила от Томаса Ханта Морган и его сотрудников. Они доказали, что гены расположены в хромосомах линейно и наследуются сцепленно и что это сцепление может нарушать кроссинговер.

В 1910 г, изучая плодовую мушку дрозофилу обыкновенную, или дрозофилу фруктовую (Drosophila melanogaster), Морган обнаружил мутировавшего самца мухи с белыми глазами вместо красных. Он немедленно приступил к её изучению, желая узнать, будет ли эта черта наследоваться менделеевским способом.

Следуя экспериментальной процедуре, установленной Менделем, Морган скрестил особей из поколения F1 между собой. Из 4252 особей поколения F2 782 (18%) имели белые глаза. Хотя соотношение красно- и белоглазых дрозофил было больше чем 3:1, оно послужило доказательством того, что цвет глаз наследуется независимо. Однако нечто в исходе скрещивания было странным и непредсказуемым – все белоглазые мухи поколения F2 были самцами.

  • Гены находятся в хромосомах.
  • Хромосомы содержат неодинаковое число разных генов, набор генов негомологичных хромосом уникален.
  • Гены в хромосоме расположены в линейной последовательности.
  • Аллели одного гена занимают одинаковые локусы в гомологичных хромосомах.
  • Гены одной хромосомы образуют группу сцепления, то есть наследуются преимущественно сцепленно (совместно), благодаря чему происходит сцепленное наследование некоторых признаков. Число групп сцепления равно гаплоидному числу хромосом данного вида (у гомогаметного пола) или больше на 1 (у гетерогаметного пола). У человека — 23 группы сцепления у женщин и 24 у мужчин.
  • Сцепление нарушается в результате кроссинговера, частота которого прямо пропорциональна расстоянию между генами в хромосоме (поэтому сила сцепления находится в обратной зависимости от расстояния между генами).
  • Каждый биологический вид характеризуется определённым набором хромосом — кариотипом.
  • За единицу расстояния между сцепленными генами принята 1 морганида – расстояние, на котором кроссинговер происходит с вероятностью 1%.

Закон сцепленного наследования открыл 2021 год

Хромосомная теория наследственности объясняет передачу генов не только сцепленных с половыми хромосомами. У душистого горошка ген окраски цветка (фиолетовый против красного) и ген формы пыльцевого зерна (круглые или удлинённые) переносятся в одной хромосоме. Поэтому аллели этих генов наследуются вместе.

Гетерозиготные растения душистого горошка имеют фиолетовые цветки и удлинённые пылинки. Аллели, отвечающие за фиолетовую окраску и удлинённую форму пыльцы лежат в одной гомологичной хромосоме, а отвечающие за красный цвет и круглую форму – в другой. Значит, две гаметы этого растения будут содержать либо аллели с фиолетовым цветом и овальной формой, либо с красной окраской и круглой формой пыльцевого зерна.

Такой тип наследования не соответствует независимому наследованию, поскольку окраска цветка и форма не отделяются во время мейоза.

Чтобы увидеть, как связь между генами влияет на наследование двух разных признаков, давайте рассмотрим еще один из экспериментов Моргана с дрозофилами. В этом случае будем следить за наследованием окраски тела и размеров крыльев мух.

Дикие плодовые мушки имеют серые тела и крылья нормального размера. Вдобавок к этим мухам Морган успел обзавестись мутантными особями с черными телами и крыльями намного меньше обычных – рудиментарными. Мутантные аллели являются рецессивными по отношению к аллелям дикого типа. Во время изучения наследования этих двух генов, Морган провел скрещивание, показанное на рисунке ниже.

Сначала он скрестил чистые линии этих мух с серым телом и нормальными крыльями (ААВВ) и с чёрным телом и зачаточными крыльями (аавв). Все гибриды первого поколения в соответствии с законом единообразия были серыми с нормальными крыльями (АаВв).

Мейоз и случайное оплодотворение порождают генетические вариации среди потомства у организмов, размножающихся половым путем. О независимом наследовании Мендель узнал из скрещиваний, в которых он следил за двумя признаками гороха. Он увидел, что некоторые потомки имеют черты, которые не совпадают ни с одной из родительских. Скрещивая растения с жёлтыми круглыми семенами с растениями с зелёными морщинистыми, он получил также жёлтые морщинистые и зелёные круглые семена (рекомбинантные, или кроссоверные).

Но половина потомства унаследовала фенотип, который соответствует одному из родительских. Когда 50% всего потомства являются рекомбинантами, как в данном примере говорят, что существует частота рекомбинации равная 50%. Частота рекомбинации в 50% также наблюдаются для любых двух генов, расположенных на разных хромосомах.

Теперь давайте вернемся в «летную комнату» Моргана, чтобы посмотреть, как можно проиллюстрировать результаты тесткросса. Напомним, что большинство отпрысков по окраске тела и размерам крыла имел родительские фенотипы.

Это дало возможность предположить, что два гена были в одной хромосоме. Появления родительских типов в количестве больше 50% указывает на то, что гены связаны. Около 17% потомства, однако, были рекомбинантами, значит имел место кроссинговер.

Рекомендуем!  Справка о вступлении в наследство в БТИ

При полном сцеплении в результате анализирующего скрещивания получается только 2 фенотипа в соотношении 1:1.

Физическое поведение хромосом во время мейоза способствует генерации вариаций в потомстве. Каждая пара гомологичных хромосом выстраивается независимо от других пар во время метафаза I, во время профазы I смешиваются и сочетаются части материнского и отцовского гомологов. Это одна из причин наследственной изменчивости организмов – комбинативная.

Причины комбинативной изменчивости:

  • перетасовка аллелей генов во время кроссинговера;
  • независимое расхождение хромосом в процессе мейоза;
  • случайность встречи гамет во время оплодотворения и значит случайный набор хромосом.
  1. гены, отвечающие за наследование признаков, расположены в хромосомах;
  2. гены располагаются линейно, каждый ген имеет своё место в хромосоме – локус;
  3. набор генов в каждой хромосоме уникален;
  4. расположенные близко друг к другу группы генов наследуются сцеплено;
  5. число сцепленных генов равно гаплоидному набору хромосом и постоянно для каждого вида (у человека 23 пары хромосом, следовательно, 23 пары сцепленных генов);
  6. сцепление хромосом нарушается в ходе кроссинговера (перекрёста) – процесса обмена участками хромосом в профазе I мейоза;
  7. чем дальше друг от друга находятся сцепленные группы генов в хромосоме, тем больше вероятность кроссинговера.
  • общая химия
  • соли
  • генетика
  • наследственность
  • растворы
  • аналитическая химия
  • Наследование признаков / Глава 14 Параграф 38
  • Наследственность / Глава 14 Параграф 35
  • Закономерности наследования. Моногибридное скрещивание / Параграф 3. 11
  • Генетика. Г. Мендель – основоположник генетики / Параграф 3. 10
  • Реализация наследственной информации в клетке / Параграф 2. 10

Впервые явление сцепленного наследования признаков было описано в $1906$ году В. Бетсоном и Р. Пеннетом в опытах, проводимых с душистым горошком. Но они не смогли объяснить результаты опытов и пришли к выводу об ограниченности правила независимого комбинирования признаков, установленного Г. Менделем.

Экспериментальными исследованиями явления сцепленного наследования успешно занимался выдающийся американский естествоиспытатель и генетик Томас Хант Морган. Он со своими ассистентами и сотрудниками А. Стервантом, Г. Миллером и К. Бриджесом провел основательные исследования. Результаты этих исследований позволили предложить и аргументированно обосновать хромосомную теорию наследственности.

  • Открытый урок по биологии в 10 классе на тему » Решение генетических задач»
  • Рабочая программа по биологии 11 класс
  • Презентация » Хромосомная теория наследственности. Генетика пола»

Сцепленное наследование признаков. Закон Томаса Моргана

  • Неравновесное сцепление генов
  • Наследование, сцепленное с полом
  • Генетическая карта
  • Рекомбинация (биология)

  1. О.-Я.л.Бекиш. Медицинская биология. — Минск: Ураджай, 2000. — С. 125-128. — 518 с.

Согласно условию задачи, проводится скрещивание женской особи серой мухи с нормальными крыльями, гетерозиготной по обоим признакам и мужской чёрной — с редуцированными. Известно, что нормальная длина крыльев и серая окраска — это доминантные признаки. Расстояние от одного гена «а» и «в» — 5%. Какое можно ожидать потомство?

Генотипы родителей G: АаВв * аавв.

Наблюдая за скрещиванием мух, учёный не увидел предполагаемого расщепления по третьему закону Менделя в отношении 1: 1: 1: 1 Когда он разобрался в причинах, ему удалось сформулировать хромосомную теорию наследственности, которая объяснила природу подобных исключений.

В ходе работы Томас Морган обнаружил ряд закономерностей:

На предыдущих уроках мы с вами изучили основополагающие законы генетики – это три закона Г. Менделя и познакомились с цитологическими основами их действия. Давайте вспомним всё, что мы изучили по данной теме.

Слайд: Вопросы:

  1. Назовите три закона Г. Менделя?
    I закон – закон единообразия, II закон – закон расщепления, III закон – закон независимого наследования.
  2. Каких правил придерживался Г. Мендель при проведении своих опытов?
    1. использовал для скрещивания растения разных самоопыляющихся сортов – чистыми линиями
    2. чтобы получить больше материала для анализа, использовал несколько родительских пар гороха
    3. намеренно упростил задачу, наблюдая наследование только одного признака; остальные не учитывал
  3. Сформулируйте закон чистоты гамет. Кому принадлежит открытие этого закона?
    При образовании гамет в каждую из них попадает только один из двух аллельных генов.
  4. Всегда ли признаки можно чётко разделить на доминантные и рецессивные?
    В некоторых случаях доминантный ген не до конца подавляет рецессивный ген из аллельной пары. При этом возникают промежуточные признаки.
  5. Какое название получило это явление?
    Это явление получило название неполного доминирования.
  6. Всегда ли по фенотипу можно определить, какие гены содержит данная особь? Приведите пример.
    Не всегда. Рецессивный признак всегда проявляется только в гомозиготном состоянии, т.е. аа. А доминантный признак может проявляться у особей с гомозиготным или гетерозиготным генотипом, т.е. АА или Аа.
  7. Можно ли установить генотип особей, которые не различаются по фенотипу? Какой метод используют для этого?
    Да, можно установить. Для этого используют скрещивание исследуемой особи с рецессивной гомозиготой аа по исследуемому признаку, называемое анализирующим скрещиванием.
  8. Какими особенностями характеризуется дигибридное скрещивание?
    Рассматривается наследование и производится точный количественный учёт потомства по двум парам альтернативных признаков.
  9. Всегда ли справедлив закон независимого наследования, т.е. III закон Г. Менделя?
    Закон справедлив только в тех случаях, когда гены рассматриваемых признаков располагаются в разных негомологичных хромосомах.

Сцепленное наследование — понятие, виды и значение

Приветствие класса

Итак, законы Г. Менделя имеют свои ограничения. После их открытия в науке постепенно стали накапливаться факты о том, что в некоторых случаях расщепление признаков происходит не по правилам Г. Менделя. При анализе этого явления оказалось, что гены исследуемых признаков были в одной хромосоме и наследовались вместе. Сегодня мы будем говорить об особенностях такого наследования, выясним существуют ли случаи его нарушения. Так же мы разберём особенности определения пола различных живых организмов и механизм наследования признаков, сцепленных с полом.

Тема сегодняшнего занятия: «Сцепленное наследование. Генетика пола.»

Слайд: «Сцепленное наследование. Генетика пола.»

Генов, кодирующих различные признаки у любого организма очень много. Например, у человека приблизительно около 100 000 генов, а видов хромосом только 23. Следовательно, все они умещаются в этих хромосомах. Как же наследуются гены, находящиеся в одной хромосоме?

На этот вопрос даёт ответ Современная хромосомная теория наследственности созданная Т. Морганом.

Слайд: Томас Хант Морган

Основным объектом, с которым работали Т. Морган и его ученики, была плодовая мушка Дрозофила. Проводилось дигибридное анализирующее скрещивание по двум признакам: длине крыльев и цвету тела. Данные опытов показали, что получается расщепление признаков 1:1 вместо ожидаемого — 1:1:1:1.

Слайд: Эксперимент Т. Моргана

Слайд: Закон Т. Моргана

В ходе этих исследований было также доказано, что каждый ген имеет в хромосоме своё строго определённое место — локус. В последствии эта особенность расположения генов будет практически использована для составления генетических карт.

Однако в экспериментах Моргана выяснилось, что среди гибридов первого поколения при проводимых скрещиваниях, появлялся небольшой процент мушек с перекомбинацией признаков, находящихся в одной хромосоме, т.е. нарушение сцепленного наследования.

Слайд: Нарушение сцепленного наследования

Оказалось, что во время профазы первого деления мейоза гомологичные хромосомы могут разрываться в месте контакта и обмениваться аллельными генами. Это явление получило название – перекреста или кроссинговера.

Слайд: Кроссинговер

Большинство живых организмов представлено особями двух видов – мужского и женского. Как же генетически определяется принадлежность организма к тому или иному полу?

Слайд: Классификация хромосом организма

В начале ХХ века Т. Морган установил, что самцы и самки отличаются друг от друга всего одной парой хромосом – половых хромосомы. Хромосомы в этой паре отличны друг от друга. Остальные пары хромосом одинаковы и получили название – аутосом. При формировании гамет у самки будет образовываться один вид гамет: 3 аутосомы + Х хромосома, а у самцов два вида гамет: 3 аутосомы + Х хромосома или 3 аутосомы + У хромосома. Если при оплодотворении с яйцеклеткой сольётся сперматозоид с Х-хромосомой, то разовьётся самка, если с У-хромосомой, то – самец.

Слайд: От какого пола – гомозиготного или гетерозиготного зависит пол будущей особи?

– От гетерозиготного, т.е. содержащего половые хромосомы разного вида

Этот факт доказывает следующая схема.

Слайд: Схема расщепления по признаку пола у дрозофилы

У некоторых видов живых организмов хромосомное определение пола совсем другое. Рассмотрим такие случаи.

Слайд: Хромосомное определение пола

Слайд: Все ли гены, находящиеся в половых хромосомах определяют признаки, имеющие отношение к полу?

Если гены, определяющие какой либо признак расположены в аутосомах, то наследование признака происходи независимо от того, кто его носитель – мужчина или женщина. Если гены признака расположены в половых хромосомах, то его наследование будет определяться его расположением в Х или У хромосоме, а значит и принадлежностью к определённому полу.

Слайд: Наследование сцепленное с полом

Примером такого наследования служит наследование таких заболеваний у человека как гемофилия и дальтонизм. Гены, определяющие здоровый и больной признак расположены в Х-хромосоме половой пары. В этом случае болезнь проявляется у мужчин, даже несмотря на то, что больной ген в рецессивной форме.

Сообщения учащихся о гемофилии и дальтонизме

Слайд: Гемофилия

Информация: Гемофилия — наследственная болезнь, передаваемая по рецессивному сцепленному с Х-хромосомой, типу, проявляющаяся повышенной кровоточивостью.
Передается по наследству через потомство сестер и дочерей больного. Женщины-носительницы передают гемофилию не только своим детям, а через дочерей-носительниц — внукам и правнукам, иногда и более позднему потомству. Болеют мальчики (гемофилия С встречается и у девочек).

Выделяют три формы гемофилии — А, В и С. При гемофилии А отсутствует фактор VIII, при гемофилии В — фактор IX и при гемофилии С — фактор XI свертывания крови.

Слайд: Дальтонизм

А теперь, давайте посмотрим, на сколько вы поняли то, о чём шла речь на уроке, и выполним приготовленные задания.

Диск: тестовые вопросы по изученной теме. («Виртуальная школа «Кирилла и Мефодия», репетитор по биологии», «Виртуальная школа «Кирилла и Мефодия», репетитор по биологии») вопросы №238, 226, 217, 222, 254, 256.

  1. Законы Г. Менделя имеют ограничения
  2. Гены, находящиеся в одной хромосоме наследуются совместно, т.е. сцеплено
  3. Явление нарушения сцепленного наследования называется кроссинговером
  4. Принадлежность к полу определяется парой половых хромосом
  5. Гены, находящиеся в половой паре хромосом наследуются сцеплено с полом

Слайд: Выучить §3.8,3.10; Уметь отвечать на вопросы после параграфов.

Выполнить письменно задание на карточках.

Подготовить сообщения о видах взаимодействия генов.

Опорный конспект, письменное задание.

30.08.2009

Putprav.ru