Вывел закон сцепленного наследования признаков

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Вывел закон сцепленного наследования признаков». Также Вы можете бесплатно проконсультироваться у юристов онлайн прямо на сайте.

Раздел ЕГЭ: 3.5 … Законы Моргана: сцепленное наследование признаков, нарушение сцепления генов…

В каждой хромосоме локализовано множество генов. Гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются вместе. Совместное наследование генов Т. Морган предложил назвать сцепленным. Число групп сцепления соответствует гаплоидному набору хромосом.

Способ наследования сцепленных генов отличается от наследования генов, находящихся в разных хромосомах. При независимом комбинировании дигибрид образует четыре типа гамет в равных количествах, а дигибрид с генами, локализованными в одной паре хромосом, — только два типа гамет, тоже в равных количествах.

Закон Моргана – сцепленное наследование

Вид эксперимента: дигибридное скрещивание.

Исходные условия: G — серое тело, g — темное тело, L — нормальные крылья, / — редуцированные крылья.

Закон был открыт на основании анализа результатов двух последовательных экспериментов.

Участники скрещивания: гомозиготные мухи-дрозофилы с серым телом и нормальными крыльями (GGLL) и с темным телом и редуцированными крыльями (ggll).

Новый организм получает от родителей не россыпь генов, а целые хромосомы, при этом количество признаков и соответственно определяющих их генов гораздо больше, чем хромосом. В соответствии с хромосомной теорией наследственности, гены, расположенные в одной хромосоме, наследуются сцепленно. Вследствие этого при дигибридном скрещивании они не дают ожидаемого расщепления 9:3:3:1 и не подчиняются третьему закону Менделя. Можно было бы ожидать, что сцепление генов является полным, и при скрещивании гомозиготных по данным генам особей и во втором поколении дает исходные фенотипы в соотношении 3:1, а при анализирующем скрещивании гибридов первого поколения расщепление должно составлять 1:1.

Для проверки этого предположения американский генетик Т. Морган выбрал у дрозофилы пару генов, контролирующих окраску тела (серое — черное) и форму крыла (длинные — зачаточные), которые расположены в одной паре гомологичных хромосом. Серое тело и длинные крылья являются доминантными признаками. При скрещивании гомозиготной мухи с серым телом и длинными крыльями и гомозиготной мухи с черным телом и зачаточными крыльями во втором поколении действительно были получены в основном родительские фенотипы в соотношении, близком к 3:1, однако имелось и незначительное количество особей с новыми комбинациями этих признаков. Данные особи называются рекомбинантными.

Сцепленное наследование генов и кроссинговер

Дальнейшие исследования генетиков показали, что законы Менделя о независимом наследовании признаков при дигибридном скрещивании применимы лишь тогда, когда разные гены располагаются в разных парах гомологичных хромосом. В том случае, если два гена находятся в одной паре гомологичных хромосом, расщепление в потомстве гибридов будет другим.

У любого организма генов значительно больше, чем хромосом.

Например, у человека имеется около миллиона генов, а хромосом всего 23 пары. Следовательно, в одной хромосоме размещается в среднем несколько тысяч генов. Гены, расположенные в одной хромосоме, называют сцепленными. Все гены этой хромосомы образуют группу сцепления, которая при мейозе обычно попадает в одну гамету.

Значит, гены, входящие в одну группу сцепления, не подчиняются закону независимого наследования, а при дигибридном скрещивании вместо ожидаемого расщепления по фенотипу в соотношении 9:3:3:1 дают соотношение 3:1, как при моногибридном скрещивании.

В качестве объекта он использовал плодовую муху дрозофилу. У дрозофилы окраску тела и длину крыльев определяют следующие пары аллелей: А — серое тело, а — черное тело, В — длинные крылья, b — зачаточные крылья.

Гены, отвечающие за окраску тела и длину крыльев, находятся в одной паре гомологичных хромосом и наследуются сцепленно.

Чтобы рассказать кратко и понятно о законе Томаса Моргана, следует для начала вспомнить, что такое хромосома.

Хромосома – это структура, находящаяся в ядре клетки и несущая наследственную информацию. Состоит из длинной цепи ДНК, которая в свою очередь состоит из генов – единиц наследственной информации. Каждый ген отвечает за определённый признак. Набор хромосом называется кариотипом.

Рис. 1. Хромосома.

Мендель рассматривал признаки, находящиеся в разных хромосомах. При скрещивании образуются разные комбинации генов, формирующие генотип индивида.

В отличие от закона Менделя закон Моргана применим к генам, находящимся в одной хромосоме.

Формулировка закона звучит следующим образом: гены, расположенные в одной хромосоме близко друг к другу, образуют группу и наследуются сцеплено. Число сцепленных групп соответствует гаплоидному набору – половине полного набора хромосом. У человека 46 хромосом, т.е. 23 пары, соответственно 23 группы сцепления.

Рис. 2. Закон Моргана.

Частота наследования зависит от расстояния между генами. Чем ближе находятся гены, образующие группы, тем чаще наследуются сцепленные признаки, т.е. при близком расположении сильнее сила сцепления.

Примеры сцепленного наследования:

  • окраска семян кукурузы сцеплена со структурой их поверхности (гладкая или морщинистая);
  • окраска цветков душистого горошка сцеплена с формой пыльцы;
  • болезни (дальтонизм, гемофилия) сцепленны с Х-хромосомой.

Если гены не сцеплены, то образуется четыре типа гамет AaBb – AB, aB, Ab, ab. При скрещивании гибридов соотношение фенотипов будет 9:3:3:1 (произойдёт расщепление). При сцепленном наследовании образуется два типа гамет – AB и ab. В этом случае поколение F2 даст потомство с фенотипом 3:1.

Хромосомной теорией наследования именуют теорию, доказывающую материальную основу наследственности в виде хромосом. Здесь находятся гены, обособленные клеточным ядром. Благодаря свойствам хромосом осуществляется преемственность свойств организмов по ряду поколений. Основоположником хромосомной теории является Т.Г. Морган, который вместе со своими учениками установил:

  • локализацию генов в хромосомах;
  • зависимость частоты кроссинговера между гомологичными хромосомами от расстояния между генами, локализованными в одной хромосоме;
  • наличие определенной последовательности в расположении генов по хромосомам;
  • сцепленное расположение близконаходящихся генов и образование ими сцепленных групп, равных числу гаплоидного хромосомного набора;
  • кроссинговер (обмен гомологичными участками) и его процентную частоту.

Важнейшим следствием указанной теории являются современные представления о генах, как о функциональных наследственных единицах. Сформировать хромосомной теории помогли и сведения, которые получены в результате наблюдения за генетикой пола.

  • Геометрия
  • Информатика
  • Математика
  • Алгебра
  • Алгебра и начала математического анализа
  • Изобразительное искусство
  • Музыка
  • Испанский язык
  • Английский язык
  • Немецкий язык
  • Французский язык

  • Основы безопасности жизнедеятельности
  • Физическая культура
  • Русский язык
  • Литература
  • Литературное чтение
  • Технология (мальчики)
  • Технология
  • Технология (девочки)

Чтобы рассказать кратко и понятно о законе Томаса Моргана, следует для начала вспомнить, что такое хромосома.

Хромосома – это структура, находящаяся в ядре клетки и несущая наследственную информацию. Состоит из длинной цепи ДНК, которая в свою очередь состоит из генов – единиц наследственной информации. Каждый ген отвечает за определённый признак. Набор хромосом называется кариотипом.

Закон сцепленного наследования Т. Моргана может нарушаться. Происходит обмен участками генов между гомологичными хромосомами, и образуются новые комбинации генов. Такое явление называется кроссинговером. Нарушение связей происходит в мейозе при конъюгации (I профаза – сближение и соединение). Гомологичные хромосомы обмениваются участками, нарушая сцепленные связи. В этом случае полностью соблюдается третий закон Менделя.

В начале двадцатого века Томас Хант Морган (1866–1945 гг.) пытался проверить, как действует закон Менделя независимого наследования признаков у животных. Т. X. Морган – американский зоолог. Работал в Колумбийском университете и Калифорнийском технологическом институте. На основе исследований мутаций у дрозофилы, проведенных вместе с Г. Дж. Меллером, А. Стертевантом и К. Бриджесом, обосновал представление о материальных носителях наследственности. За сформулированную на основе этих исследований хромосомную теорию наследственности награжден Нобелевской премией (1933 г.).

Исследования проводились на плодовой мушке дрозофиле (Drosophila melanogaster). Преимущества избранного исследовательского материала:
– имеет небольшое количество хромосом – четыре пары;
– легко содержать;
– имеют значительную плодовитость;
– быстрая смена поколений – каждые полторы-две недели.

Количество генов больше количества хромосом. То есть в каждой хромосоме – большее количество генов. Гены, лежащие в одной хромосоме, называют сцепленными. Все гены, лежащие в одной хромосоме, образуют группу сцепления. Они попадают в одну гамету и наследуются вместе. Наличие групп сцепления установлено для всех генетически изученных организмов. Число групп сцепления у организмов равно числу пар хромосом и соответствует числу хромосом в гаплоидном наборе. Например, у кукурузы их 10, у дрозофилы – 4, у человека – 23.

Для генетически менее изученных видов пока что известны не все гены, поэтому число групп сцепления в них несколько меньше числа пар хромосом. Например, у кроликов 22 пары хромосом, а групп сцепления известно лишь 11. У вирусов и бактерий все гены относятся к одной группе сцепления.

Таким образом, из-за сцепления генов они в одной хромосоме наследуются все вместе, тогда как гены, расположенные в разных хромосомах, могут независимо комбинироваться в процессе мейоза по законам случайного распределения.

Рекомендуем!  Оформить вступление в наследство

Открытие сцепленного наследования, его нарушений позволило Т. X. Моргану создать хромосомную теорию наследственности. Она была дополнена современными фактами исследований генетики и цитологии.

Основные положения хромосомной теории наследственности:
– гены расположены в хромосомах, каждый ген имеет определенное место (локус) в хромосоме;
– гены в хромосомах расположены линейно;
– гены одной хромосомы образуют группу сцепления; количество групп сцепления равняется гаплоидному набору хромосом и постоянно для каждого вида;
– аллельные гены находятся в одинаковых локусах в гомологичных хромосомах;
– между гомологичными хромосомами возможен обмен аллельными генами (кроссинговер);
– расстояние между генами в хромосомах пропорционально проценту кроссинговера между ними; чем дальше гены один от другого, тем чаще между ними случается кроссинговер;
– гены относительно стабильны, но могут изменяться в результате мутационного процесса;
– каждый биологический вид имеет определенный набор хромосом (кариотип).

Вывел закон сцепленного наследования признаков

Признаки большинства формируются с участием нескольких генов, взаимодействие между которыми отражается на проявлении фенотипа.

Типичные примеры взаимодействия аллельных генов – это полное доминирование, промежуточный характер наследования.

Но в процессе развития организма в сложные взаимодействия между собой вступают и неаллельные гены. Наиболее известные взаимодействия – комплементарность, эпистаз и полимерия.

Существует такое явление, когда на проявление состояний разных признаков влияет одна аллель. Называется оно множественным действием аллелей. Например, при заболевании человека арахнодактилией (человек имеет удлиненные пальцы конечностей, похожие на конечности паука) наблюдаются пороки сердца и неправильное положение хрусталика глаза. Арахнодактилия обусловлена мутацией доминантной аллели. Заболевание галактоземеем связано с рецессивной мутацией гена, который кодирует фермент, необходимый для усвоения клетками галактозы (молочного сахара). Вместе с заболеванием у людей развивается полоумие, цирроз печени, слепота.

  • общая химия
  • соли
  • генетика
  • наследственность
  • растворы
  • аналитическая химия
  • Наследование признаков / Глава 14 Параграф 38
  • Наследственность / Глава 14 Параграф 35
  • Закономерности наследования. Моногибридное скрещивание / Параграф 3. 11
  • Генетика. Г. Мендель – основоположник генетики / Параграф 3. 10
  • Реализация наследственной информации в клетке / Параграф 2. 10

Хромосомная теория наследственности — теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, то есть преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом. Хромосомная теория наследственности возникла в начале 20 в. на основе клеточной теории и использовалась для изучения наследственных свойств организмов гибридологического анализа.

Основоположник хромосомной теории Томас Гент Морган, американский генетик, Нобелевский лауреат. Морган и его ученики установили, что:

– каждый ген имеет в хромосоме определенный локус (место);

– гены в хромосоме расположены в определенной последовательности;

– наиболее близко расположенные гены одной хромосомы сцеплены, поэтому наследуются преимущественно вместе;

– группы генов, расположенных в одной хромосоме, образуют группы сцепления;

– число групп сцепления равно гаплоидному набору хромосом у гомогаметных особей и n+1 у гетерогаметных особей;

– между гомологичными хромосомами может происходить обмен участками (кроссинговер); в результате кроссинговера возникают гаметы, хромосомы которых содержат новые комбинации генов;

– частота (в %) кроссинговера между неаллельными генами пропорциональна расстоянию между ними;

– набор хромосом в клетках данного типа (кариотип) является характерной особенностью вида;

– частота кроссинговера между гомологичными хромосомами зависит от расстояния между генами, локализованными в одной хромосоме. Чем это расстояние больше, тем выше частота кроссинговера. За единицу расстояния между генами принимается 1 морганида (1 % кроссинговера) или процент появления кроссоверных особей. При значении этой величины в 10 морганид можно утверждать, что частота перекреста хромосом в точках расположения данных генов равна 10 % и что в 10 % потомства будут выявлены новые генетические комбинации.

Для выяснения характера расположения генов в хромосомах и определения частоты кроссинговера между ними строятся генетические карты. Карта отражает порядок расположения генов в хромосоме и расстояние между генами одной хромосомы. Эти выводы Моргана и его сотрудников получили название хромосомной теории наследственности. Важнейшими следствиями этой теории являются современные представления о гене, как о функциональной единице наследственности, его делимости и способности к взаимодействию с другими генами.

Формированию хромосомной теории способствовали данные, полученные при изучении генетики пола, когда были установлены различия в наборе хромосом у организмов различных полов.

А1. Доминантный аллель – это

1) пара одинаковых по проявлению генов

2) один из двух аллельных генов

3) ген, подавляющий действие другого гена

4) подавляемый ген

А2. Часть молекулы ДНК считается геном, если в ней закодирована информация о

1) нескольких признаках организма

2) одном признаке организма

3) нескольких белках

4) молекуле т-РНК

А3. Если признак не проявляется у гибридов первого поколения, то он называется

1) альтернативным

2) доминантным

3) не полностью доминирующим

4) рецессивным

А4. Аллельные гены расположены в

1) идентичных участках гомологичных хромосом

2) разных участках гомологичных хромосом

3) идентичных участках негомологичных хромосом

4) разных участках негомологичных хромосом

А5. Какая запись отражает дигетерозиготный организм:

1) ААВВ

2) АаВв

3) АаВвСс

4) ааВВсс

А6. Определите фенотип тыквы с генотипом Сс ВВ, зная, что белая окраска доминирует над желтой, а дисковидная форма плодов – над шаровидной

1) белая, шаровидная

2) желтая, шаровидная

3) желтая дисковидная

4) белая, дисковидная

А7. Какое потомство получится при скрещивании комолой (безрогой) гомозиготной коровы (ген комолости В доминирует) с рогатым быком.

1) все ВВ

2) все Вв

3) 50% ВВ и 50% Вв

4) 75% ВВ и 25% Вв

А8. У человека ген лопоухости (А) доминирует над геном нормально прижатых ушей, а ген нерыжих (В) волос над геном рыжих волос. Каков генотип лопоухого, рыжего отца, если в браке с нерыжей женщиной, имеющей нормально прижатые уши, у него были только лопоухие, нерыжие дети?

1) ААвв

2) АаВв

3) ааВВ

4) ААвВ

А9. Какова вероятность рождения голубоглазого (а), светловолосого (в) ребенка от брака голубоглазого темноволосого (В) отца и кареглазой (А), светловолосой матери, гетерозиготных по доминантным признакам?

1) 25%

2) 75%

3) 12,5%

4) 50%

А10. Второй закон Менделя – это закон, описывающий процесс

1) сцепления генов

2) взаимного влияния генов

3) расщепления признаков

4) независимого распределения гамет

А11. Сколько типов гамет образует организм с генотипом ААВвСс

1) один

2) два

3) три

4) четыре

А1. Сколько пар хромосом отвечает за наследование пола у собак, если диплоидный набор у них равен 78?

1) одна

2) две

3) тридцать шесть

4) восемнадцать

А2. Закономерности сцепленного наследования относятся к генам, расположенным в

1) разных не гомологичных хромосомах

2) гомологичных хромосомах

3) в одной хромосоме

4) негомологичных хромосомах

А3. Мужчина дальтоник женился на женщине с нормальным зрением, носительнице гена дальтонизма. Ребенка с каким генотипом у них быть не может?

1) ХdХ

2) XX

3) ХdХd

4) ХУ

А4. Чему равно число групп сцепления генов, если известно, что диплоидный набор хромосом организма равен 36?

1) 72

2) 36

3) 18

4) 9

А5. Частота кроссинговера между генами К и С – 12%, между генами В и С – 18%, между генами К и В – 24%. Каков вероятный порядок расположения генов в хромосоме, если известно, что они сцеплены.

1) К-С-В

2) К-В-С

3) С-В-К

4) В-К-С

А6. Каким будет расщепление по фенотипу в потомстве, полученном от скрещивания черных (А) мохнатых (В) морских свинок, гетерозиготных по двум признакам, сцепленным в одной хромосоме?

1) 1 : 1

2) 2 : 1

3) 3 : 1

4) 9 : 3 : 3 : 1

А7. У супружеской пары родился сын гемофилик. Он вырос и решил жениться на здоровой по данному признаку женщине, не несущей гена гемофилии. Каковы возможные фенотипы будущих детей этой супружеской пары, если ген сцеплен с Х-хромосомой?

Подробное экспериментальное доказательство и объяснение хромосомная теория наследственности получила от Томаса Ханта Морган и его сотрудников. Они доказали, что гены расположены в хромосомах линейно и наследуются сцепленно и что это сцепление может нарушать кроссинговер.

В 1910 г, изучая плодовую мушку дрозофилу обыкновенную, или дрозофилу фруктовую (Drosophila melanogaster), Морган обнаружил мутировавшего самца мухи с белыми глазами вместо красных. Он немедленно приступил к её изучению, желая узнать, будет ли эта черта наследоваться менделеевским способом.

Законы Т. Моргана: сцепленное наследование признаков, нарушение сцепления генов

  • Гены находятся в хромосомах.
  • Хромосомы содержат неодинаковое число разных генов, набор генов негомологичных хромосом уникален.
  • Гены в хромосоме расположены в линейной последовательности.
  • Аллели одного гена занимают одинаковые локусы в гомологичных хромосомах.
  • Гены одной хромосомы образуют группу сцепления, то есть наследуются преимущественно сцепленно (совместно), благодаря чему происходит сцепленное наследование некоторых признаков. Число групп сцепления равно гаплоидному числу хромосом данного вида (у гомогаметного пола) или больше на 1 (у гетерогаметного пола). У человека — 23 группы сцепления у женщин и 24 у мужчин.
  • Сцепление нарушается в результате кроссинговера, частота которого прямо пропорциональна расстоянию между генами в хромосоме (поэтому сила сцепления находится в обратной зависимости от расстояния между генами).
  • Каждый биологический вид характеризуется определённым набором хромосом — кариотипом.
  • За единицу расстояния между сцепленными генами принята 1 морганида – расстояние, на котором кроссинговер происходит с вероятностью 1%.
Рекомендуем!  Сроки для принятия наследства ГК РФ

Хромосомная теория наследственности объясняет передачу генов не только сцепленных с половыми хромосомами. У душистого горошка ген окраски цветка (фиолетовый против красного) и ген формы пыльцевого зерна (круглые или удлинённые) переносятся в одной хромосоме. Поэтому аллели этих генов наследуются вместе.

Гетерозиготные растения душистого горошка имеют фиолетовые цветки и удлинённые пылинки. Аллели, отвечающие за фиолетовую окраску и удлинённую форму пыльцы лежат в одной гомологичной хромосоме, а отвечающие за красный цвет и круглую форму – в другой. Значит, две гаметы этого растения будут содержать либо аллели с фиолетовым цветом и овальной формой, либо с красной окраской и круглой формой пыльцевого зерна.

Такой тип наследования не соответствует независимому наследованию, поскольку окраска цветка и форма не отделяются во время мейоза.

Чтобы увидеть, как связь между генами влияет на наследование двух разных признаков, давайте рассмотрим еще один из экспериментов Моргана с дрозофилами. В этом случае будем следить за наследованием окраски тела и размеров крыльев мух.

Дикие плодовые мушки имеют серые тела и крылья нормального размера. Вдобавок к этим мухам Морган успел обзавестись мутантными особями с черными телами и крыльями намного меньше обычных – рудиментарными. Мутантные аллели являются рецессивными по отношению к аллелям дикого типа. Во время изучения наследования этих двух генов, Морган провел скрещивание, показанное на рисунке ниже.

Сначала он скрестил чистые линии этих мух с серым телом и нормальными крыльями (ААВВ) и с чёрным телом и зачаточными крыльями (аавв). Все гибриды первого поколения в соответствии с законом единообразия были серыми с нормальными крыльями (АаВв).

Мейоз и случайное оплодотворение порождают генетические вариации среди потомства у организмов, размножающихся половым путем. О независимом наследовании Мендель узнал из скрещиваний, в которых он следил за двумя признаками гороха. Он увидел, что некоторые потомки имеют черты, которые не совпадают ни с одной из родительских. Скрещивая растения с жёлтыми круглыми семенами с растениями с зелёными морщинистыми, он получил также жёлтые морщинистые и зелёные круглые семена (рекомбинантные, или кроссоверные).

Но половина потомства унаследовала фенотип, который соответствует одному из родительских. Когда 50% всего потомства являются рекомбинантами, как в данном примере говорят, что существует частота рекомбинации равная 50%. Частота рекомбинации в 50% также наблюдаются для любых двух генов, расположенных на разных хромосомах.

Теперь давайте вернемся в «летную комнату» Моргана, чтобы посмотреть, как можно проиллюстрировать результаты тесткросса. Напомним, что большинство отпрысков по окраске тела и размерам крыла имел родительские фенотипы.

Это дало возможность предположить, что два гена были в одной хромосоме. Появления родительских типов в количестве больше 50% указывает на то, что гены связаны. Около 17% потомства, однако, были рекомбинантами, значит имел место кроссинговер.

При полном сцеплении в результате анализирующего скрещивания получается только 2 фенотипа в соотношении 1:1.

Сцепленное наследование. Хромосомная теория наследственности.

  • Конспект урока в 10 классе «Методы исследования генетики человека»
  • Рабочая программа по биологии 10-11 класс. Просвещение. В.И. Сивоглазов, А.А.Каменский.

Мы изучим понятия: сцепленные гены, группа сцепления, морганида, кроссоверные и некроссоверные гаметы. Разберем опыты Моргана. Сформулируем закон сцепленного наследования и положения современной Хромосомной теории.

История развития психогенетики в России Скачать 20891 0 0

… , наследственность и естественный отбор. Появление теории эволюции привлекло внимание исследователей к феномену наследственности, поскольку он играет существенную роль в эволюционном процессе. Этапы развития психогенетики В истории развития генетики поведения человека можно, конечно достаточно условно, выделить четыре основных периода: 1) Зарождение генетики поведения человека. Огромную …

Эволюция и генетика человека в контексте эпохи Скачать 50055 0 0

… идеализма» [36]. Другим ответом на сессию было расширенное заседание президиума Академии медицинских наук СССР 9-10 сентября (см.: «Медицинский работник», 15.IX.1948), которое объявило формальный запрет генетики человека. После десятилетия полного молчания были созданы лаборатории В.П.Эфроимсона, А.А.Прокофьевой-Бельговской, Е.Э.Погосян, М.А.Арсеньевой, которые включали в свою тематику проблемы …

Вклад русских генетиков в науку Скачать 50224 0 0

нетика, микробиология, вирусология. Генетика человека — раздел генетики, изучающий закономерности наследования и изменчивости признаков у человека. Глава 2. Русские учёные в развитии генетики генетика наследственность ученый лобашев филипченко Филипченко Юрий Александрович У истоков отечественной генетики стояли выдающиеся ученые, которые пришли в новую науку из традиционных биологических …

Будущее человечества и прогресс генетики Скачать 68861 0 0

… придется смириться с определенным числом химически индуцированных мутаций, поскольку общество не может отказаться от тех преимуществ, которые дают ему достижения современной химии. В будущем человечеству придется столкнуться с увеличением частоты спонтанных мутаций. Оно приведет к соответствующему увеличению численных и структурных хромосомных аберраций и наследственных заболеваний, …

Занятие начинается с актуализации знаний учащихся о независимом наследовании пар неаллельных генов при дигибридном скрещивании.

Педагог задает следующие вопросы группе:

  • Какое скрещивание называется дигибридным ?
  • Сколько пар генов находится в генотипе, вступающих в скрещивание организмов ?
  • Каков генотип у дигетерозиготных форм ?
  • Какое расщепление ожидается в F2 от скрещивания дигетерозиготных форм ?
  • Как идет наследование отдельных пар признаков ( отдельных аллелей ) при дигибридном скрещивании ?

После окончания беседы с группой по предложенным вопросам педагог делает вывод о том, что в основе дигибридного скрещивания лежат определенные биологические явления, такие как мейоз, свободное комбинирование гамет в процессе оплодотворения, особенности взаимодействия между аллельными и неаллельными генами и др., глубокое понимание которых поможет проанализировать и более сложные генетические процессы.

Педагог отмечает, что на начальном этапе развития генетики знание основных закономерностей дигибридного скрещивания позволило ученым изучить типы взаимодействия между генами, изменение характера расщепления при этих взаимодействиях. Было накоплено большое количество материала, подтверждающего законы Г. Менделя и их всеобщий характер, но в тоже время было замечено, что некоторые признаки не дают независимого распределения в потомстве. Постепенно таких исключений из III закона Г.Менделя накапливалось все больше. Стало ясно, что принцип независимого распределения в потомстве распространяется не на все гены. У любого организма признаков очень много, а число хромосом невелико. Следовательно, в каждой хромосоме должно находиться много генов. Каковы же закономерности наследования генов, локализованных в одной хромосоме, т.е. особенности сцепленного наследования генов ?

Педагог озвучивает тему занятия – «Сцепленное наследование признаков», и знакомит учащихся с вопросами, которые будут рассматриваться на данном уроке:

  • Каковы особенности поведения хромосом и генов при независимом и сцепленном наследовании ?
  • Каким образом будут различаться результаты расщепления в F2 при независимом и сцепленном наследовании ?
  • Каковы особенности анализирующего скрещивания в рассматриваемых случаях ?
  • Что называется сцеплением генов и сцепленным наследованием ?
  • Что такое группы сцепления и каково их количество у организмов разных видов ?

Для того, чтобы ответить на данные вопросы необходимо сопоставить поведение генов в данных типах скрещивания с поведением хромосом в мейозе. Для этого преподаватель вводит новый тип записи скрещивания, в котором хромосомы обозначают линией (негомологичные хромосомы различаются по длине данных линий), а гены отмечают точкой на хромосомах. Поскольку важной частью занятия является сравнение поведения хромосом и находящихся в них генов при независимом и сцепленном типах наследования, записи данных видов скрещиваний делаются в рамках единой таблицы, что обеспечивает быстрое и наглядное сопоставление результатов.

Таблица имеет следующий вид.

Хромосомная теория

  • Общая характеристика
  • Программы
  • Туристическая эстафета
  • Установка палатки
  • Гидрологические исследования
  • Проекты по краеведению
  • Работа с одаренными детьми
  • Детская одаренность
  • Проблемы одаренных детей
  • Сопровождение одаренных детей
  • Развитие творческих способностей
  • Малая академия наук
  • Региональные отделения МАН
  • Структура Малой академии наук
  • Научные общества учащихся
  • Руководителю научного общества
  • Мероприятия научного общества
  • Образовательный процесс
  • Цели и задачи УДОД
  • Методическая служба УДОД
  • Система работы УДОД
  • Сетевое взаимодействие
  • Стратегия развития УДОД

Виды поддерживают свое существование сменой одних поколений другими. При этом возможны различные формы размножения: простое деление, как у одноклеточных организмов, вегетативное воспроизводство, как у многих растений, половое размножение, свойственное высшим животным и растениям (см. РАЗМНОЖЕНИЕ). Половое размножение осуществляется с помощью половых клеток – гамет (сперматозоидов и яйцеклеток). Каждая гамета несет одинарный, или гаплоидный, набор хромосом, содержащий только по одному гомологу; у человека это 23 хромосомы. Соответственно, каждая гамета содержит только один аллель каждого гена. Половина гамет, производимых особью, несет один аллель, а половина – другой. При слиянии яйцеклетки со сперматозоидом – оплодотворении, – образуется одна диплоидная клетка, называемая зиготой. Из клеток, получающихся в результате митотических делений зиготы в процессе индивидуального развития (онтогенезе), формируется новый организм. В зависимости от того, какие аллели несет данная особь, у нее развиваются те или иные признаки. Отметим, что равновероятное распределение аллелей по гаметам было открыто Грегором Менделем в 1865 и известно как Первое правило Менделя.

Рекомендуем!  Решение задач по праву о наследстве

Химия, Биология, подготовка к ГИА и ЕГЭ

Рассмотрим такой признак, как группа крови. Имеется целый ряд типов, или систем, групп крови. Наиболее известна система AB0, по которой различают четыре основных группы: I, II, III и IV; эти группы обозначают также как 0, A, B и AB, поскольку различие между ними определяется тем, какой белок (антиген) присутствует в эритроцитах человека: A или B. Генетически система групп крови AB0 контролируется тремя аллелями: один аллель, обозначаемый A, контролирует синтез антигена A, другой аллель, B, – синтез антигена B, а третий аллель , – неактивный и не вызывает образования антигена. Соответственно синтезируемым антигенам и различают четыре группы крови, но им отвечают шесть генетических вариантов (генотипов):

генотип 00 A0 AA B0 BB AB
типы белка A B AB
группа крови I II III IV

Аллель проявляется фенотипически, т.е. как признак организма, только тогда, когда он оказывается в гомозиготном состоянии (00); этому соответствует первая группа крови, характеризующаяся отсутствием групповых антигенов. В гетерозиготном состоянии (генотипы A0 и B0) он никак не влияет на формируемый фенотип, который целиком определяется альтернативным аллелем (A или B). Поэтому фенотипически генотипы A0 и AA тождественны: они характеризуются наличием антигена A и определяют вторую группу крови. Точно так же тождественны генотипы B0 и BB, определяющие третью группу, т.е. наличие антигена B.

В том случае, когда у гетерозиготной особи фенотипически проявляется только один аллель, говорят, что этот аллель доминантный; при этом другой аллель называется рецессивным. Для системы групп крови AB0, аллели A и B доминируют над аллелем ; последний же рецессивен по отношению к ним. Если оба аллеля проявляются в фенотипе гетерозиготной особи, то говорят, что они кодоминантны. Так, аллели A и B кодоминантны по отношению друг к другу: в гетерозиготном состоянии (AB) они определяют присутствие обоих антигенов, A и B, т.е. четвертую группу крови.

Рецессивными часто бывают «дефектные» аллели, не способные производить соответствующий продукт (белок). Поэтому многие наследственные заболевания, обусловленные нехваткой или отсутствием какого-либо белка или фермента, передаются как рецессивный признак: ими страдают только лица гомозиготные по дефектному аллелю. Доминантные болезни чаще всего вызываются аллелями, кодирующими измененные полипептидные цепи. Последние, входя в состав белка, нарушают его пространственную структуру и функциональную активность. Доминантным заболеваниям подвержены лица гетерозиготные по дефектному аллелю. В гомозиготном состоянии доминантные аллели, как правило, летальны.

У индивидов, гомозиготных по данному гену, все гаметы несут один и тот же его аллель. Среди гамет, производимых гетерозиготной особью, половина несет один аллель, а половина – другой. Знак «плюс» в следующей таблице показывает, какие гаметы производятся разными индивидами по локусу системы групп крови AB0.

Группа крови I II III IV
Генотип индивида 00 A0 AA B0 BB AB
Продуцируе-
мые гаметы

A
B
+ +
+
+ +

+

+

+
+

Из этой таблицы видно, что люди со второй и третьей группами крови продуцируют разные гаметы в зависимости от того, гомозиготны они или гетерозиготны. Из таблицы также видно, какой генотип ожидается у детей от родителей с теми или иными группами крови. Если оба родители гомозиготны, то все их дети будут одинаковой группы. Например, родители с первой группой крови образуют гаметы, несущие только аллель , поэтому у их детей может быть только первая группа. Если мать имеет вторую, а отец третью группу крови и при этом они гомозиготны, т.е. их генотип, соответственно, АА и ВВ, то дети могут иметь только четвертую группу крови (АВ).

Если же один или оба родителя гетерозиготны, то наблюдается т.н. расщепление признака в потомстве, вытекающее из сформулированного выше Первого правила Менделя и проявляющееся в том, что у детей могут появиться признаки, отсутствующие у родителей. Так, если бы в вышеприведенном примере мать была гетерозиготна, то она производила бы яйцеклетки двух типов – с аллелем A и с аллелем . При этом у нее может равновероятно родиться ребенок с третьей либо с четвертой группой крови (генотипа B0 или AB, соответственно). Таким образом, при генотипе матери А0 и отца ВВ дети не могут иметь группу крови матери; их группа крови будет либо такой же, как у отца, либо такой, какая не свойственна ни отцу, ни матери.

Если оба родителя гетерозиготны, то разнообразие генотипов среди детей еще выше. Например, если отец и мать имеют вторую группу крови и генотип их A0, то генотип и группа крови их ребенка зависит от того, какая именно яйцеклетка созрела и каким сперматозоидом она будет оплодотворена. Поскольку в данном примере каждый из родителей производит гаметы A и 0, то генотип их ребенка может быть AA, A0 или 00, а согласно теории вероятностей шансы получить их распределяются как 1:2:1. Поскольку первые два генотипа определяют одну и ту же группу крови, то по признаку «группа крови» шансы иметь ребенка с первой или второй группой крови будут 1:3 (эти соотношения в потомстве гетерозиготных родителей были открыты Менделем). И наконец, если бы мать имела вторую, а отец третью группу крови и оба они были бы гетерозиготными, то с равной вероятностью у них мог бы родиться ребенок с любой группой крови.

К настоящему времени составлены подробные карты генов для многих видов растений, животных и человека, из которых можно видеть, какие из генов на какой хромосоме находятся. Знание карты генов позволяет предсказать поведение нескольких признаков в потомстве. Если разные признаки определяются генами, расположенными в негомологичных хромосомах, то они наследуются независимо друг от друга, поскольку в процессе мейотического деления негомологичные хромосомы (а значит и аллели разных генов) расходятся по гаметам случайно (см. ГЕНЕТИКА). Последнее известно как Второе правило Менделя. Например, такой признак, как альбинизм, связан с отсутствием меланина, синтез которого контролируется геном, расположенным в 11-й хромосоме. Следовательно, вероятность того, что у супругов-альбиносов будет ребенок-альбинос, не связана с вероятностью иметь определенную группу крови системы AB0, поскольку последняя определяется геном, находящимся в иной, негомологичной, 9-й хромосоме. Поэтому, если один или оба родителя имеют дефектные аллели, расположенные на разных хромосомах и вызывающие два разных заболевания, то вероятность того, что ребенок получит оба дефектных аллеля, будет равна произведению вероятностей получить каждый из этих аллелей в отдельности.

Пол особи – это сложный признак, формируемый как действием генов, так и условиями развития. У человека одна из 23 пар хромосом – половые хромосомы, обозначаемые как X и Y. Женщины – гомогаметный пол, т.е. имеют две X-хромосомы, одну – полученную от матери, а другую – от отца. Мужчины – гетерогаметный пол, имеют одну X— одну Y-хромосому, причем X передается от матери, а Y – от отца. Заметим, что гетерогаметный пол не всегда обязательно мужской; например, у птиц это самки, в то время как самцы гомогаметны. Имеются и другие механизмы детерминации пола. Так, у ряда насекомых Y-хромосома отсутствует. При этом один из полов развивается при наличии двух X-хромосом, а другой – при наличии одной X-хромосомы. У некоторых насекомых пол определяется соотношением числа аутосом и половых хромосом. У ряда животных может происходить т.н. переопределение пола, когда в зависимости от факторов внешней среды зигота развивается либо в самку, либо в самца. Развитие пола у растений имеет столь же разнообразные генетические механизмы, как и у животных.

Отклонение от баланса половых хромосом, приводит к патологии, подобно тому как и отклонение от нормального числа аутосом также приводит к тяжелым болезням (см. ВРОЖДЕННЫЕ ПОРОКИ). Однако следует иметь в виду, что формирование пола и нормальных половых признаков – сложный физиологический процесс, в который вовлечены гены не только половых хромосом, но и аутосом. Гормональные и другие физиологические нарушения могут приводить к тому, что из «мужской» зиготы XY развивается внешне почти нормальная женщина, но с определенными мужскими признаками – по типу волосяного покрова, структуре мышц, тембру голоса и др. – и имеющая вместо матки недоразвитые семенники, что делает ее бесплодной. Возможно и обратное, когда при наличии генотипа XX индивид развивается с вторичными половыми признаками мужского пола. Подобные отклонения встречаются не только у человека, но и у других видов.

Генетическая детерминация пола, определяемая набором половых хромосом, поддерживает равное воспроизводство самок и самцов. Действительно, женские яйцеклетки содержат только X-хромосому, поскольку женщины имеют генотип XX по половым хромосомам. Генотип же мужчин – XY, и потому рождение девочки или мальчика в каждом конкретном случае определяется тем, несет ли спермий X— или Y-хромосому. Поскольку же в процессе мейоза хромосомы имеют равные шансы попасть в гамету, то половина гамет, производимых индивидами мужского пола, содержит X-, а половина – Y-хромосому. Поэтому половина потомков ожидается одного пола, а половина – другого.

Putprav.ru